Comparison of cytotoxicity and genotoxicity of 4-hydroxytamoxifen in combination with Tualang honey in MCF-7 and MCF-10A cells
نویسندگان
چکیده
BACKGROUND The Malaysian Tualang honey (TH) is not only cytotoxic to human breast cancer cell lines but it has recently been reported to promote the anticancer activity induced by tamoxifen in MCF-7 and MDA-MB-231 cells suggesting its potential as an adjuvant for the chemotherapeutic agent. However, tamoxifen produces adverse effects that could be due to its ability to induce cellular DNA damage. Therefore, the study is undertaken to determine the possible modulation of the activity of 4-hydroxytamoxifen (OHT), an active metabolite of tamoxifen, by TH in non-cancerous epithelial cell line, MCF-10A, in comparison with MCF-7 cells. METHODS MCF-7 and MCF-10A cells were treated with TH, OHT or the combination of both and cytotoxicity and antiproliferative activity were determined using LDH and MTT assays, respectively. The effect on cellular DNA integrity was analysed by comet assay and the expression of DNA repair enzymes was determined by Western blotting. RESULTS OHT exposure was cytotoxic to both cell lines whereas TH was cytotoxic to MCF-7 cells only. TH also significantly decreased the cytotoxic effect of OHT in MCF-10A but not in MCF-7 cells. TH induced proliferation of MCF10A cells but OHT caused growth inhibition that was abrogated by the concomitant treatment with TH. While TH enhanced the OHT-induced DNA damage in the cancer cells, it dampened the genotoxic effect of OHT in the non-cancerous cells. This was supported by the increased expression of DNA repair proteins, Ku70 and Ku80, in MCF-10A cells by TH. CONCLUSION The findings indicate that TH could afford protection of non-cancerous cells from the toxic effects of tamoxifen by increasing the efficiency of DNA repair mechanism in these cells.
منابع مشابه
Modeling Breast Acini in Tissue Culture for Detection of Malignant Phenotype Reversion to Non-Malignant Phenotype
Backgrounds: Evidence is accumulating to support disruption of tissue architecture as a powerful event in tumor formation. For the past four decades, intensive cancer research with the premise of “cancer as a cell based-disease” focused on finding oncogenes or tumor suppressor genes. However, the role of the tissue architecture was neglected. Three dimensional (3D) cell cultures which can recap...
متن کاملEvaluation of Cytotoxicity Effects of Combination Nano-Curcumin and Berberine in Breast Cancer Cell Line
Background: Berberine and Nano-curcumin are two herbal medicines with strong anti-cancer effects on tumor cells, but low toxicity on normal cells, when used alone. Breast cancer is known as the most common cancer in women and second deadly one. In this study, we evaluated the cytotoxicity effects of combination Berberine and Nano-curcumin in breast cancer cell line to see whether they have furt...
متن کاملCytotoxicity and Genotoxicity Assessment of Sandalwood Essential Oil in Human Breast Cell Lines MCF-7 and MCF-10A
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epith...
متن کاملInhibition of Akt phosphorylation attenuates resistance to TNF-α cytotoxic effects in MCF-7 cells, but not in their doxorubicin resistant derivatives
Objective(s): Acquisition of TNF-α resistance plays role in the onset and growth of malignant tumors. Previous studies have demonstrated that MCF-7 cell line and its doxorubicin resistant variant MCF-7/Adr are resistant against the cytotoxic effects of TNF-α. In this study, we investigated the role of Akt activation in resistance of MCF-7 and MCF-7/Adr against TNF-α cytotoxicity. Materials and ...
متن کاملThe Genotoxic and Cytotoxic Effects of Bisphenol-A (BPA) in MCF-7 Cell Line and Amniocytes
Bisphenol-A (BPA) is an industrial xenoestrogen used widely in our living environment. Recently, several studies suggested that BPA has destructive effects on DNA and chromosomes in normal body cells via estrogen receptors (ER). Therefore, BPA could be considered as an important mediator in many diseases such as cancer. However, there are still many controversial issues which need clarification...
متن کامل